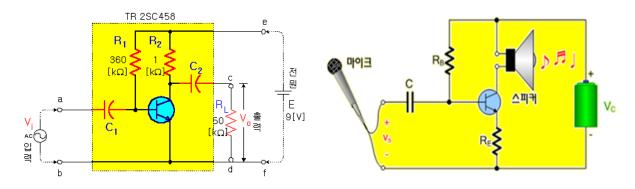
▲정현파

순시값
$$i = I_m \sin \omega t[A]$$

$$\bigcirc$$
 실효값 $=$ $\frac{$ 최대값}{\sqrt{2}}

③ 최대값
$$=$$
 실효값 $\sqrt{2}$ ⑤ 실효값 $=$ $\frac{최대값}{\sqrt{2}}$ ⑥ 명균값 $=$ $\frac{2 \times 최대값}{\pi}$

제 3 장 증폭회로(TR = 3극관)


1 증폭회로의 특성

① 증폭(amplification): 입력신호가 증폭기에 의해서 확대되는 현상.

② 일그러짐(distortion) : 확대되는 과정에서 출력신호의 파형이 입력신호의 파형과 같지 않음

③ 증폭도 : 입력 전압이 얼마나 크게 되었는가를 나타내는 값으로써 출력/입력(Vo/Vi)

2 증폭 작용

3 증폭 회로의 구성

- ① 바이어스 : 증폭회로에 입력 전압이 가해지지 않는 상태에서 트랜지스터에 직류 전압을 가하여 일정 전류 를 흐르게 함으로써 입력 신호의 기준점이 되게 하는 것.
- ② 바이어스가 변동하면 정확한 증폭이 안되고. 회로 동작이 불안정하며 열폭주를 일으켜 트랜지스터가 파 괴될 경우도 있다.
 - (a) 이미터 전류 (I_E) , (b) 베이스 전류 (I_B) , (c) 컬렉터 전류 (I_C)